Catastrophic Forgetting, Rehearsal and Pseudorehearsal

نویسنده

  • Anthony V. Robins
چکیده

This paper reviews the problem of catastrophic forgetting (the loss or disruption of previously learned information when new information is learned) in neural networks, and explores rehearsal mechanisms (the retraining of some of the previously learned information as the new information is added) as a potential solution. We replicate some of the experiments described by Ratcliff (1990), including those relating to a simple “recency” based rehearsal regime. We then develop further rehearsal regimes which are more effective than recency rehearsal. In particular “sweep rehearsal” is very successful at minimising catastrophic forgetting. One possible limitation of rehearsal in general, however, is that previously learned information may not be available for retraining. We describe a solution to this problem, “pseudorehearsal”, a method which provides the advantages of rehearsal without actually requiring any access to the previously learned information (the original training population) itself. We then suggest an interpretation of these rehearsal mechanisms in the context of a function approximation based account of neural network learning. Both rehearsal and pseudorehearsal may have practical applications, allowing new information to be integrated into an existing network with minimum disruption of old information.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-refreshing Som as a Semantic Memory Model

Natural and artificial cognitive systems suffer from forgetting information. However, in natural systems forgetting is typically gradual whereas in artificial systems forgetting is often catastrophic. Catastrophic forgetting is also a problem for the Self-Organizing Map (SOM) when used as a semantic memory model in a continuous learning task in a nonstationary environment. Methods based on rehe...

متن کامل

Catastrophic interference in connectionist networks

Introduction Catastrophic forgetting vs. normal forgetting Measures of catastrophic interference Solutions to the problem Rehearsal and pseudorehearsal Other techniques for alleviating catastrophic forgetting in neural networks Summary

متن کامل

Pseudorehearsal in actor-critic agents

—Catastrophic forgetting has a serious impact in reinforcement learning, as the data distribution is generally sparse and non-stationary over time. The purpose of this study is to investigate whether pseudorehearsal can increase performance of an actor-critic agent with neural-network based policy selection and function approximation in a pole balancing task and compare different pseudorehearsa...

متن کامل

Pseudorehearsal in value function approximation

Catastrophic forgetting is of special importance in reinforcement learning, as the data distribution is generally non-stationary over time. We study and compare several pseudorehearsal approaches for Qlearning with function approximation in a pole balancing task. We have found that pseudorehearsal seems to assist learning even in such very simple problems, given proper initialization of the reh...

متن کامل

Consolidation in Neural Networks and in the Sleeping Brain

In this paper we explore the topic of the consolidation of information in neural network learning. One problem in particular has limited the ability of a broad range of neural networks to perform ongoing learning and consolidation. This is “catastrophic forgetting”, the tendency for new information, when it is learned, to disrupt old information. We will review and slightly extend the rehearsal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Connect. Sci.

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1995